

#### Introduction

CN1609 is internally integrated with PFM modulation controller and power BJT, and adopts advanced primary side control technology. It does not need optocoupler and other feedback elements on the periphery.It is dedicated to high performance, simplified AC-DC switching power supply with peripheral circuits. The internal CV and CC regulation make it have high output precision, stability and reliability.

The chip provides extremely comprehensive and excellent intelligent protection functions, including cycle by cycle over-current detection (external CS resistance can be set), overload protection, over-voltage protection, short circuit protection and soft start function. When the chip is light loaded, the chip uses frequency reduction adjustment and burping operation, which makes CN1609 have a low standby power consumption of 30MW.

The frequency jitter and soft start function of the chip make it have good EMI

characteristics. CN1609 provides a very good control mode for the customer's small power supply system developed with flyback architecture. It also provides a good implementation mode for temperature controller, intelligent switch and secondary market intelligent electricity meter.

#### Features

- Wide input AC range: 90Vac~265Vac
- Output power: 3~5W
- Up to 70KHz operating frequency
- Excellent system ESD performance
- Adjustable cable compensation (3%~8%)
- Adjustable line compensation
- High Efficiency Quasi Resonance Mode
- Over temperature protection
- Output over-voltage protection
- Output short circuit protection

### APPLICATIONS

- Internet of things
- Mobile phone chargers
- low standby power supply



|  | Ordering | information |
|--|----------|-------------|
|--|----------|-------------|

| Part number | Package | Packing   | Output power |  |  |
|-------------|---------|-----------|--------------|--|--|
| CN1609      | SOP7    | 3000/Reel | 3~5W         |  |  |

# Typical applications



#### Fig.1 CN1609 based 4.2V 1A isolated power supply

| Parameter               | Symbol             | Value       | Unit | Condition  |
|-------------------------|--------------------|-------------|------|------------|
| AC supply               | V <sub>AC</sub>    | 90~265      | V    |            |
| Output voltage          | VO                 | 4.2         | V    |            |
| Output current          | I <sub>OMAX</sub>  | 1           | A    |            |
| Output current accuracy | Διο/Ιο             | <u>+</u> 5% |      | •          |
| Output voltage accuracy | ΔVo/Vo             | <u>+</u> 5% |      |            |
| Cable compensation      | Vcab/Vo            | 2%          |      |            |
| Switching frequency     | f <sub>MAX</sub>   | 65          | KHz  | Rated load |
| start time              | T <sub>Start</sub> | <2          | S    | At 220Vac  |

# Pin definitions

| 1           | U      | 7      | ] GND        |
|-------------|--------|--------|--------------|
| 2<br>3<br>4 | CN1609 | 6<br>5 | ] нv<br>] нv |

|     |                   | CN160        | 9                                                                      |
|-----|-------------------|--------------|------------------------------------------------------------------------|
| Pin | Pin Name Pin Type |              | Pin Functions                                                          |
| 1   | VCC               | Power supply | Chip power input pinswitcher                                           |
| 2   | VS                | Input        | Voltage sense of secondary winding                                     |
| 3   | LN                | Line         | Line voltage compensation                                              |
| 4   | CS                | Input        | Connected to power MOS source stage.<br>Primary current sampling input |



| 5,6 | HV  | Power  | Connected to power MOS drain level |
|-----|-----|--------|------------------------------------|
| 7   | GND | Ground | Chip Reference                     |

#### ■ Absolute maximum ratings (Note 1)

| Parameter                         | Name  | Range       | Unit |
|-----------------------------------|-------|-------------|------|
| Collector voltage of Power BJT    | HV    | -0.5 to 850 | V    |
| Voltage at VCC to Ground          | VCC   | -0.5 to 40  | V    |
| VS input voltage                  | VS    | -10 to 30   | V    |
| Voltage at LN to Ground           | LN    | -0.5 to 6   | V    |
| Voltage at CS to Ground           | CS    | -0.5 to 6   | V    |
| Maximum junction temperature      | Тјмах | 150         | °C   |
| Welding temperature               | TLEAD | 260         | °C   |
| Storage temperature               | Tstg  | -55 to 150  | °C   |
| ESD rating per ANSI/STM5.1-2001   | HBM   | 2000        | V    |
| ESD rating per JEDEC JESD22-C101F | CDM   | 1000        | V    |
| Machine model                     | ММ    | 200         | V    |

Note1: Stresses over those listed under "Absolute maximum ratings" may cause permanent damages to the device. These are stress ratings only. Functional operation beyond those under "Recommended operating conditions" is not implied.

# Recommended operating conditions

| Symbol | Parameter            | Range | Unit |  |
|--------|----------------------|-------|------|--|
| HV     | Power device voltage | 0~750 | V    |  |
| VCC    | Supply voltage       | 4~36  | V    |  |

#### Thermal Resistance

| Thermal resistance          | θja(SOP7) | 130 | °C/W |  |
|-----------------------------|-----------|-----|------|--|
| Over temperature protection | Τοτρ*     | 150 | °C   |  |

\*Typical, guarantee by design



#### Electrical Characteristics

(Ta=25°C, unless otherwise specified)

| Parameter                                          | Symbol     | Condition  | Min      | Тур  | Мах   | Unit |
|----------------------------------------------------|------------|------------|----------|------|-------|------|
| Power supply(VCC pin)                              | <u> </u>   |            | <u>.</u> |      |       |      |
| VCC overvoltage protection                         | VCCOVP     |            |          | 37   |       | V    |
| Quiescent current @ no<br>load                     | lcc        | VCC=12V    |          | 60   |       | μA   |
| Startup voltage                                    | Vsт        |            | 6        | 7.5  | 9     | V    |
| Minimum operating<br>voltage                       | Vuvlo      |            | 2.5      | 3.7  | 4.7   | V    |
| Startup current                                    | lsт        | VCC=Vst-1V |          | 0.4  | 0.6   | μA   |
| Constant voltage control                           | (VS pin)   |            |          |      |       |      |
| VS regulation voltage                              | Vvs        |            | -2.95    | -3.0 | -3.05 | V    |
| Cable compensation<br>current                      | Ісав       | At Iomax   |          | 50   |       | μA   |
| Min. operating frequency                           | fмın       |            |          | 300  |       | Hz   |
| Constant current control (CS pin)                  |            |            |          |      |       |      |
| Shutdown voltage @full<br>load                     | Vcsmax     |            | 585      | 600  | 615   | mV   |
| Shutdown voltage @no<br>load                       | Vcsmin     |            |          | 200  |       | mV   |
| Pre-shutdown voltage                               | VCSPRE/VCS |            |          | 83   |       | %    |
| Leading edge blanking                              | Tleb       |            |          | 300  |       | nS   |
| Maximum duty of<br>secondary winding<br>conduction | Dsmax      |            |          | 0.57 |       |      |
| Drive control                                      |            |            |          |      |       |      |
| Drive current                                      | ldrv       |            |          | 50   |       | mA   |
| Overdrive time                                     | Tovd       |            |          | 300  |       | nS   |
| Driving current rising time                        | Tdr        | VCC=12V    |          | 60   |       | nS   |
| Pull down resistance                               | Rdson      | OUT=2V     |          | 3    |       | Ω    |
| Sinking current rising time                        | Tsr        | VCC=12V    |          | 30   |       | nS   |
| Protection function                                |            |            |          |      |       |      |



CN1609

| Over temperature protection    | Тотр              | 130 | 160 | °C |
|--------------------------------|-------------------|-----|-----|----|
| Over-temperature<br>hysteresis | T <sub>HYST</sub> |     | 30  | °C |
| Output over voltage            | [Vvsovp]          |     | 3.6 | V  |
| Short circuit voltage          | Vvshiccup         |     | 0.9 | V  |

## Functional block diagram



#### Fig.2 CN1609 block diagram

#### Principle of operation

The CN1609 is a high performance offline AC-DC switcher for LED isolated power supply applications. The devices operate in Discontinuous Conduction Mode (DCM) with Primary Side Regulation (PSR) to achieve Constant Voltage (CV) and Constant Current (CC) in the whole load range.

#### 1. Power up and power down sequences

Refer to Fig.1 and Fig.2, after AC power supply is applied to the converter, VCC capacitor C1 is charged via the startup resistors R<sub>ST1</sub> and R<sub>ST2</sub>. When VCC voltage reaches startup voltage V<sub>ST</sub>, the switcher U1 starts to work.

Then Driving current is generated to turn on the power device, and voltage on CS pin ramps up as the current through the primary winding generates voltage drop across the current sense resistor Rcs. When the CS pin voltage reaches V<sub>CSREF</sub> after the Leading Edge Blanking (LEB) time T<sub>LEB</sub>, the controller turns off the power device inside the switcher, then generates next turn on event according to the load conditions of the charger.

When the AC power is removed, the VCC voltage continues to drop due to there is no sufficient energy in the input capacitor CIN1 and CIN2. When VCC voltage drops below VUVLO, the power device is forbidden to turn on, the switcher waits for the VCC voltage to be higher than Vst for a new round startup.





## 2. Constant Voltage (CV) operation

Constant voltage operation occurs when the load is between no-load and full-load. Output voltage is sensed at the VS pin, which is connected to the auxiliary winding via resistors Rvs1 and Rvs2. The VS waveform is sampled at TsAM, around 2/3 duration of the secondary winding conduction time(ToNs). The sampled voltage is regulated at Vvs by the voltage control loop. The CV output is determined by the resistors Rvs1, Rvs2 and the turn ratio of secondary winding to auxiliary winding (Ns/NA). The output voltage at cable end is:

#### Vo=|Vvs|\*(1+Rvs1/Rvs2)\*(Ns/NA)

### 3 . Cable Compensation

The VS pin sinks a current proportional to load current to generate cable compensation voltage. The cable compensation current at IOMAX is ICAB. The cable compensation voltage VCAB can be adjusted by setting the Rvs1, Rvs2 values. Neglecting the forward conduction voltage of D2, the cable compensation voltage at full load is

The output voltage at PCB end is

```
VOPCB= VO+VCAB
```

The cable compensation percentage is approximately

VCAB/VO= ICAB\*(RVS1//RVS2)/|VVS|-0.02

The -0.02 item in the formula is to compensate load regulation...

### 4. Constant Current (CC) operation

Constant current operation occurs when load is heavier than the rated maximum load. Output current is limited by setting the maximum ratio of secondary winding conduction time (Tons) to non-conduction time (Toffs) to restrict the output power.

IOMAX=0.5\*(VCSMAX/RCS) \*(NP/NS)\*DSMAX

Where DSMAX=TONSMAX /( TONSMAX +TOFFSMIN) =0.57.

During the constant current operation, if the output voltage is lower than a specified voltage Vsc for 48mS(typical), the output is regarded as shorted to ground, the switcher will go into hiccup mode (startup then shutdown repeatedly) until the output voltage is higher than Vsc again.

Vsc=Vvshiccup\*(1+Rvs1/Rvs2)\*(Ns/Na)+Icab\*Rvs1\*(Ns/Na)-Vd2

## 5. Adjustable line compensation

Since there is a constant delay time from the CS pin voltage reaching the given VCS reference to the power transistor turning off, the real primary peak current value always has a gap with the ideal value. The gap value changes with different input line voltage, which is caused by different current rising slope, results in different system constant current value.

In order to eliminate the constant current deviation due to the line voltage, the adjustable line compensation is introduced to design. By sensing the voltage of VS pin which is linear to the line voltage, a current (ILN) proportional to line voltage flows out from the CS pin to

the resistor RLN, and create an adjustable compensation voltage to clear up the primary current gap, so that the excellent line regulation of output current will be achieved.

ILN= [Vindc\*(Naux/Np)\*Rvs2/(Rvs1+Rvs2)]/1187Kohm

Vcs\_line=l\_N\*R\_N

Vcs\_real=Vcs\_line+Vcs





#### 6. Switching frequency control

The CN1609 works in Pulse Frequency Modulation (PFM) mode to control output voltage and current. As shown in Fig.5, the CS voltage at the power device turnoff instant varies from V<sub>CSMIN</sub> to V<sub>CSMAX</sub> when the load increases from no load to full load. Operating frequencies varies from 1KHz at no load to up to 70KHz at full load. The power device is turned on when the ring voltage is down to its valley (quasi-resonant switching). This can reduce turn on losses of the power device. It can also generate switching period jittering to reduce EMI.



Fig.5 Switching frequency and CS voltage v.s. load current

### 7. AC input over voltage protection

When the AC source voltage is over a specified value VACovP for 4 successive switching cycles, power device will be turned off until the AC source voltage drops below VACovP.

VACovp=0.707\*VCCovp\*(Np/NA)

### 8. Output over voltage protection

When the output voltage is over a specified value VovP for 4 successive switching cycles, power device will be turned off until a new startup event begins.  $VovP = |VvsovP|^*(1+Rvs1/Rvs2)^*(Ns/N_A)+I_{CAB}^*Rvs1^*(Ns/N_A)-V_D2$ 



## Mechanical dimensions

SOP7









| UNIT       | Α    | A1   | A2   | A3   | bp   | с    | D   | E    | e    | HE   | L    | Lp  | Q   | z   | θ  |
|------------|------|------|------|------|------|------|-----|------|------|------|------|-----|-----|-----|----|
| mm 1.75MAX | 0.10 | 1.25 | 0.25 | 0.31 | 0.17 | 4.8  | 3.8 | 1 27 | 5.8  | 1 05 | 0.4  | 0.6 | 0.3 | 0°  |    |
|            |      | 0.25 | 1.65 | 0.25 | 0.51 | 0.25 | 5.0 | 4.0  | 1.21 | 6.2  | 1.05 | 1.2 | 0.7 | 0.7 | 8° |



#### ORDER INFORMATION:

| date      | Version | Revision notes           | Reviser       |
|-----------|---------|--------------------------|---------------|
| 2020.3.27 | V1.0    | Initial data compilation | ZhangSongfeng |
|           |         |                          |               |
|           |         |                          |               |
|           |         |                          |               |